Мощные гидравлические двигатели компании «Masino» для промышленного
и мобильного применения.аксиально-поршневые
двигателирадиально-поршневые двигателишестеренчатые
двигателилопастные двигателигероторные двигателиРадиально-поршневые
двигатели, предназначенные для таких применений, где требуется
низкая скорость вращения и высокий крутящий момент.
Серии радиально-поршневых гидромоторов:
IAM - гидромоторы с фиксированным объемом односкоростные
IAC - гидромоторы двухскоростные
HC - гидромотор высокой кавитации односкоростной
IAMD - односкоростной гидромотор повышенного ресурса
G&GD; - высокоскоростные гидравлические моторы компактного
исполнения
W - гидравлические моторы колесного типа (с прямой установкой
колеса) до 3800НмH
Гидромотор - это специальное устройство, которое преобразовывает
энергию жидкости в энергию механическую, полученная в результате
этого механическая энергия поступает на другие устройства через
выходной вал гидромотора. Главное отличие гидромоторов от приводов
электрического и механического типа заключается в компактности,
долговечности и более надёжной работе. В большинстве случаев
гидравлические моторы в пятнадцать раз легче и в три раза меньше по
габаритам, чем соответствующие им по мощности электромоторы.
Характеристики гидромоторов
При выборе гидравлического мотора необходимо учитывать его основные
эксплуатационные параметры:
рабочий объем;
рабочее давление;
выходная мощность;
IAM H1 SERIES “ 13 - H1 IAM H2 SERIES “ 23 - H2 IAM H3 SERIES “ 37
- H3 IAM H4 SERIES “ 49 - H4 IAM H5 SERIES “ 59 - H5 IAM H6 SERIES
“ 71 - H6 IAM H7 SERIES “ 81 - H7 IAM H8 SERIES “ 89 - H8 CONTACT
US REACH US “ 97 Pag. 2 03/2006 GENERAL INFORMATIONS INTERMOT
produces RADIAL PISTON HYDRAULIC MOTORS since 1985: our yearly
production is more than 13.000 units which we sell all over the
world through our agents and authorized sellers. Our motor range
varies from 20cc to 8500cc displacement and it is completed by
two-speed motors and special motors created in cooperation with our
clients for different applications such as : underwater, high & low
speed and wheel motors and with the possibility to assemble valves,
brakes or gear reductions. You can directly contact our Technical
Department which will give you all the necessary support to find
the right solutions to your problems. INTERMOT is a flexible work
reality and manages deliveries also within the same day of order;
we produce motors exactly interchangeable with our competitors,
always ready on stock which our clients particularly appreciate.
TECHNICAL INNOVATION ON IAM H5, H6 AND H7 SERIES PATENTED NR.
MO2006A000026 New bearing construction to prevent from seizure of
the connecting rod with the external bushing. This event could
happen in high speed and high pressure working conditions and could
bring to motor breakdown. The new bearing design consists of: -
spacers, with function of x keeping roller axis parallel x creating
space between rollers to hold more oil - spacer rings, with
function of x keeping rollers lined up x absorbing axial forces
coming from connection rod BACK TO INDEX 03/2006 Pag. 3 ORDERING
INSTRUCTIONS BACK TO INDEX Pag. 4 03/2006 MOTOR TECHNICAL DATA
Pressure Speed Displacement Specific Torque Max Cont. Max Int. Peak
Max Continuous Peak Max Case Pressure Max Power Dry Weight MODEL N°
of pistons cc/rev Nm/bar bar bar bar rpm rpm bar hp kW kg IAM 80 5
80 1.3 230 280 350 950 1050 6 54 40 26 IAM 100 5 100 1.6 230 280
350 950 1050 6 54 40 26 IAM 150 5 157 2.5 230 280 300 950 1050 6 54
40 26 IAM 175 5 176 2.8 230 280 300 800 900 6 54 40 26 IAM 195 5
195 3.1 230 280 300 800 900 6 54 40 26 IAM 200 5 207 3.3 210 250
300 750 850 6 54 40 29 IAM 250 5 257 4.1 210 250 300 750 850 6 54
40 29 IAM 300 H1 5 307 4.9 210 250 300 750 850 6 54 40 29 IAM 200 5
198 3.2 230 280 350 800 900 6 66 49 42 IAM 250 5 253 4.0 230 280
350 750 850 6 66 49 42 IAM 300 5 314 5.0 230 280 350 750 850 6 66
49 42 IAM 350 5 362 5.8 230 280 350 650 750 6 66 49 42 IAM 400 5
424 6.7 210 280 350 600 700 6 66 49 42 IAM 500 5 492 7.8 190 240
300 500 600 6 66 49 42 IAM 600 H2 5 584 9.3 170 210 250 500 600 6
66 49 42 IAM 400 5 397 6.3 230 280 350 600 680 6 91 68 68 IAM 450 5
452 7.2 230 280 350 600 680 6 91 68 68 IAM 500 5 491 7.8 230 280
350 600 680 6 91 68 68 IAM 600 5 594 9.4 230 280 350 550 630 6 91
68 68 IAM 650 5 660 10.5 190 240 300 500 580 6 91 68 68 IAM 700 5
707 11.2 190 240 300 450 500 6 91 68 68 IAM 800 H3 5 791 12.6 170
210 250 400 450 6 91 68 68 IAM 700 5 714 11.4 230 280 350 500 580 6
107 80 92 IAM 800 5 792 12.6 230 280 350 450 530 6 107 80 92 IAM
850 5 847 13.5 230 280 350 450 530 6 107 80 92 IAM 900 5 904 14.4
230 280 350 450 530 6 107 80 92 IAM 1000 5 992 15.8 230 280 350 330
400 6 107 80 92 IAM 1100 H4 5 1116 17.8 210 225 280 330 400 6 107
80 92 BACK TO INDEX 03/2006 Pag. 5 MOTOR TECHNICAL DATA Pressure
Speed Displacement Specific Torque Max Cont. Max Int. Peak Max
Continuous Peak Max Case Pressure Max Power Dry Weight MODEL N° of
pistons cc/rev Nm/bar bar bar bar rpm rpm bar hp kW kg IAM 1200 5
1192 19.0 160 200 250 300 350 6 107 80 92 IAM 1250 H4 5 1247 19.8
160 200 250 250 300 6 107 80 92 IAM 1000 5 1094 17.4 230 300 350
350 400 6 161 120 173 IAM 1200 5 1231 19.6 230 300 350 300 350 6
161 120 173 IAM 1400 5 1376 21.9 230 250 300 300 350 6 161 120 173
IAM 1500 5 1528 24.3 230 250 300 300 350 6 161 120 173 IAM 1600 5
1648 26.2 230 250 300 300 340 6 161 120 173 IAM 1800 5 1815 28.9
210 250 300 250 300 6 161 120 173 IAM 2000 5 2035 32.4 190 230 280
230 260 6 161 120 173 IAM 2200 H5 5 2220 35.3 175 210 250 220 240 6
161 120 173 IAM 2200 5 2206 35.1 230 260 300 220 260 6 228 170 308
IAM 2500 5 2525 40.2 230 260 300 220 260 6 228 170 308 IAM 2800 5
2807 44.7 230 260 300 220 260 6 228 170 308 IAM 3000 5 2983 47.5
230 260 300 210 250 6 228 170 308 IAM 3200 5 3289 52.3 230 260 300
200 240 6 228 170 308 IAM 3500 H6 5 3479 55.4 230 260 300 200 240 6
228 170 308 IAM 3900 7 3907 62.2 230 260 300 160 200 6 241 180 405
IAM 4300 7 4343 69.1 230 260 300 150 190 6 241 180 405 IAM 4600 7
4616 73.5 230 260 300 140 190 6 241 180 405 IAM 5000 7 5088 81.0
230 260 300 140 180 6 241 180 405 IAM 5400 H7 7 5384 85.7 230 260
300 130 170 6 241 180 405 IAM 6000 10 5966 95.0 250 290 320 120 140
6 255 190 590 IAM 6500 10 6581 104.7 250 290 320 120 140 6 255 190
590 IAM 6800 10 6962 110.8 250 290 320 120 140 6 255 190 590 IAM
7600 10 7620 121.3 190 230 280 90 100 6 241 180 590 IAM 8000 H8 10
8062 128.3 180 220 270 80 90 6 241 180 590 BACK TO INDEX Pag. 6
03/2006 HYDRAULIC FLUIDS RECOMMENDATIONS HYDRAULIC FLUIDS We
recommend the use of hydraulic oils with anti-wear additives (ISO
HM or HV) and minimum viscosity index of 95. Once normal working
temperature is reached, oil viscosity must be at least 12 cSt,
preferably in the range from 20 to 60 cSt. Hydraulic oils meeting
Denison MF-O, Vickers M-2952-S I - 286-S performance requirements
and DIN 51524 specifications, are preferred. Mineral hydraulic oils
are divided into four main types, designated by the International
Standards Organisation (ISO) as HH, HL, HM and HV. We advise to use
only products with HM or HV specifications. HM type These are the
most widely employed hydraulic oils. They include small quantities
of anti-wear additives to provide significant improvement in wear
reduction. "Superior” quality HM type oils can be used for all
equipment, with the added assurance that they will be suitable for
the highest temperature. HV type HV hydraulic oils show minimal
change in viscosity with temperature variations. OIL VISCOSITY
RECOMMENDATION Room temperature HM type ISO-VG x -20°C / 0°C BP
ENERGOL HLP - HM 22 x -15°C /+5°C BP ENERGOL HLP - HM 32 x -8°C
/+15°C BP BNERGOL HLP - HM 46 x 0°C /+22°C BP ENERGOL HLP - HM 68 x
+8°C /+30°C BP ENERGOL HLP - HM100 x -20°C /+5°C BP BARTRAN HV 32 x
-15°C /+22°C BP BARTRAN HV 46 x 0°C /+30°C BP BARTRAN HV 68 Our
motors have been designed to work also with: x oils type ATF
(Automatic Transmission Fluid) x oils with viscosity SAE 10W - 20
-30 x multigrade motor oils SAE 10 W/40 or 15 W/40 x universal oils
During cold start-up, avoid high-speed operation until the system
is warmed up to provide adequate lubrication. Continuous working
temperature must not exceed 70°C. FIRE RESISTANT OIL LIMITATIONS
Max cont. pressure Max int. pressure Max speed HFA, 5-95% oil-water
103 138 50% HFB, 60-40% oil-water 138 172 100% HFC, water-glycol
103 138 50% HFD, ester phosphate 250 293 100% FILTRATION Hydraulic
systems oil must always be filtered. The choice of filtration grade
derives from needs of service life and money spent. In order to
obtain stated service life it is important to follow our
recommendations concerning filtration grade. When choosing the
filter it is important to consider the amount of dirt particles
that filter can absorb and still operate satisfactorily. For that
reason we recommend filters showing when you need to substitute
filtering cartridge. x 25 µm filtration required in most
applications x 10 µm filtration in closed circuit applications
OXIDATION Hydraulic oil oxidizes with time of use and temperature.
Oxidation causes changes in colour and smell, acidity increase or
sludge formation in the tank. Oxidation rate increases rapidly at
surface temperatures above 60°C, in these situations oil should be
checked more often. The oxidation process increases the acidity of
the fluid; the acidity is stated in terms of the "neutralization
number". Oxidation is usually slow at the beginning and then it
increases rapidly. A sharp increase (by a factor of 2 to 3) in
neutralization number between inspections shows that oil has
oxidized too much and should be replaced immediately. WATER CONTENT
Oil contamination by water can be detected by sampling from the
bottom of the tank. Most hydraulic oils repel the water, which then
collects at the bottom of the tank. This water must be drained off
at regular intervals. Certain types of transmission oils and engine
oils emulsify the water; this can be detected by coatings on filter
cartridges or a change in the colour of the oil. In such cases,
obtain your oil supplier advice. DEGREE OF CONTAMINATION Heavy
contamination of the oil causes wear rising in hydraulic system
components. Contamination causes must be immediately investigated
and remedied. ANALYSIS It is recommended oil being analyzed every 6
months. The analysis should cover viscosity, oxidation, water
content, additives and contamination. Most oil suppliers are
equipped to analyze oil state and to recommend appropriate action.
Oil must be immediately replaced if the analysis shows that it is
exhausted. BACK TO INDEX 03/2006 Pag. 7 INSTRUCTIONS AND ADVICES
INSTALLATION Hoses and piping must be clean and free from
contamination. No other special requirements are necessary. - Motor
can be mounted in any position - In run-away conditions you must
use counterbalance valves - Consult factory for intermittent
applications Splined adaptors (sleeves) are available upon request.
INSTALLATION CIRCUIT The choice of open or closed loop circuit will
be determined by the application. Open loop circuits are cheaper
and simpler to install. Closed loop circuit is a superior circuit
and usually takes up less space. It also offers better control
features. START UP Motor case and pistons must be completely filled
with oil before starting. Do not load motor to maximum working
pressure. Increase load gradually at start-up. CASE DRAIN – CASE
PRESSURE Connect the case drain directly to tank. The case drain
port on the motor must be located on the highest point of the
installation to ensure that the motor will always be full of oil.
The case drain pressure must not exceed 6 bar continuous pressure.
IMPORTANT When the motor is installed vertically with shaft
pointing upwards, consult our Technical Department. If the motor is
connected to high inertial loads, the hydraulic system must be
designed to prevent peaks of pressure and cavitation. TEMPERATURE
Maximum oil temperature must not exceed 70°C. Heath exchangers must
be used with higher temperatures. VISCOSITY The motor works
satisfactory in a range of 3°E to 10°E oil viscosity. Best
performance is obtained at the highest viscosity. BACK PRESSURE
Don’t exceed 70 bar back pressure. HIGH PEAKS APPLICATIONS In case
of high pressure peaks applications, a Nitemper treatment on
cylinders is suggested to increase wear and tear resistance.
CONTINUOUS HIGH SPEED DUTY In case of continuous high speed duty,
it is suggested to mount a central reinforced bearing on motor
shaft, please contact our Technical Department. MINIMUM SPEED
Standard minimum speed is about 0.5 to 3 rpm (depending on motor
displacement). If you need less speed, it is possible to modify
some parts of the distributor. FLUSHING In the need of Flushing, a
2nd drain hole is available upon request. When flushing is not
available, it is possible to create an inner motor drain to help
cooling. COOLING FLOW If the motor operates in the Intermittent
Power zone, it may require a cooling flow of 20 l/min (5 gpm) to
keep a drain flow viscosity of 40 cSt minimum. FOR MORE DETAILS ON
THE ABOVE MENTIONED ARGUMENTS AND FOR ANY FURTHER INFORMATION
PLEASE CONTACT OUR TECHNICAL DEPARTMENT. BEARINGS Bearings lifetime
depends on the type of bearing, on motor speed and on working
loads. Lifetime is measured by L10 which is called “theoretic
lifetime”. It represents the number of cycles that 90% of identical
bearings can effort at the same load without showing wear and tear.
It is calculated by the following equation: p 10 P C L ¸ ¹ · ¨ © §
where: C = theoretical dynamic coefficient (depending on the
bearing size) P = radial load p = exponent (p=3 for ball bearings,
p=10/3 for roller bearings) When you work at constant speed, you
can calculate the lifetime in hours with the following equation: 6
p 10 6 10h P C 60 rpm 10 60 rpm 10 L L ¸ ¹ · ¨ © § [h] When you
don’t have only radial or axial loads, you have to calculate an
equivalent load: P X FR Y FA Where FR = radial load, X = radial
coefficient, FA = axial load, Y = axial coefficient While FR and FA
come from working conditions (i.e. torque), X and Y depend on the
type of bearing and on the ratio R A F F . To help you in the
expected lifetime calculation, Intermot provides you with an EXCEL
calculation sheet. With this instrument you can easily calculate
lifetime: you only need to choose the motor model, put speed,
pressure and loads. For further information or to have the
calculation sheet, please contact our Technical Department. BACK TO
INDEX Pag. 8 03/2006 SHAFT SEAL FEATURES Type: BABSL Form: AS DIN
3760 Material: SIMRIT® 72 NBR 902 SIMRIT® 75 FKM 595 1. Features
SIMMERRING® radial shaft seal with rubber covered O.D., short,
flexibility suspensed, spring loaded sealing lip and additional
dust lip: see Part B/ SIMMERRING®, sections 1.1 and 2. 2. Material
Sealing lip and O.D.: - Acrylonitrile-butadiene rubber with 72
Shore A hardness (designation: SIMRIT® 72 NBR 902) - Fluoro rubber
with 75 Shore A hardness (designation: SIMRIT®75 FKM 595) Metal
insert: - Plain steel DIN 1624 Spring: - Spring steel DIN 17223 3.
Application For sealing pressurised media without additional backup
ring, e. g. for rotational pressure sealing in hydraulic pumps,
hydraulic motors, hydrodynamic clutches. Rubber covered O.D.
assures sealing in the housing bore even in case of considerable
surface roughness, thermal expansion or split housing. Particularly
suitable for sealing low viscosity and gaseous media. Where high
thermal stability and chemical resistance are required, SIMRIT® 75
FKM 595 material should be used. Additional dust lip to avoid the
entry of light and medium dust and dirt. 4. Operating conditions
See Part B/ SIMMERRING®, sections 2. 4. Media: mineral oils,
synthetic oils Temperature: -40°C to +100°C (SIMRIT® 72 NBR 902)
-40°C to +160°C (SIMRIT® 75 FKM 595) Surface speed: up to 5 m/s
Working pressure: see diagram 1 Maximum permitted values, depending
on other operating conditions. 5. Housing and Machining Criteria
See Part B/ SIMMERRING®, sections 2. Shaft: Tolerance: ISO h11
Concentricity: IT 8 Roughness: Ra=0.2-0.8 µm Rz=1-4 µm Rmax=6 µm
Hardness: 45-60 HRc Roughness: non oriented; preferably by plunge
grinding Housing: Tolerance: ISO H8 Roughness: Rmax < 25 µm 0
2.5 5 7.5 10 0 2000 4000 6000 8000 shaft 20 mm 40 mm 80 mm 160 mm
PRESSURE [bar] Shaft speed [rpm] Diagram 1: Pressure Loading Limits
BACK TO INDEX 03/2006 Pag. 9 FLUSHING FLUSHING FLOW Cooling flow is
necessary to assure the minimum oil viscosity and depends on motor
displacement. Motor Flushing flow [l/min] IAM H1 80, 100 5 IAM H1
150, 175, 195, 200, 250, 300 IAM H2 200, 250, 300 6 IAM H2 350,
400, 500 IAM H3 400, 450, 500 8 IAM H2 600 IAM H3 600, 650, 700,
800 IAM H4 700, 800, 850, 900, 1000, 1100 1200, 1250 IAM H5 1000,
1200, 1400, 1600, 1800, 2000 10 IAM H5 2200 IAM H6 2500, 2800,
3000, 3200, 3500 15 IAM H7 3900, 4300, 4600, 5400 IAM H8 6500,
6800, 7600, 8000, 8500 20 FLUSHING IN PERFORMANCE DIAGRAMS Each
performance diagram shows working conditions where flushing is
suggested (areas numbered form 4 to 6 in each performance diagram).
Area 1: Continuous operation Area 2: Intermittent operation for
period 3-5 minute every 10-15 minute Area 3: Intermittent operation
for very short period (3-5 seconds every 10-15 minutes) Area 4:
Continuous operation with flushing Area 5: Intermittent operation
for period 3-5 minute every10-15 minute with flushing Area 6:
Intermittent operation for very short period (3-5 seconds every
10-15 minutes) with flushing HIGH VOLUMETRIC EFFICIENCY MOTORS On
radial piston hydraulic motors with high volumetric efficiency, and
therefore Intermot IAM series, there can be a phenomenon of
oiloverheating in the body motor. Oil drawing from the piston and
from the distributor goes into body motor. When this oil quantity
is very scanty, it means there’s a good volumetric efficiency. In
some cases this is positive, like for winch on crane truck or trawl
winch, because high volumetric efficiency avoids motor rotation
even under external stress. This scanty quantity of oil is not a
problem because the motor works at high pressure only for a short
period of time. In other cases, this high efficiency can cause
problems on the motor because oil exchange is missing. In fixed
applications, for example, where the motor is running constantly
for 8 or more hours a day (like injection machines for plastic
materials, press, bending machines, etc.) high volumetric
efficiency can create temperature increasing in motor body. In this
case temperature increasing is to be avoided with the use of
flushing. Flushing consists in carrying fresh oil (taken from
hydraulic circuit) in the body motor. Oil is usually taken from
return line to avoid any loss of efficiency. In this way, all
internal parts of the motor are protected with this lubrication and
cooled with fresh oil, so that total efficiency is optimised.
FLUSHING CIRCUIT (ONE DIRECTION WORKING) FLUSHING CIRCUIT
(BIDIRECTIONAL WORKING) For more details please contact our
Technical Department. BACK TO INDEX Pag. 10 03/2006 DRAIN
RECOMMENDATIONS DISTRIBUTORS PRESSURE – FLOW D31/D310 (IAM H1, H2,
H3, H4) D40/D47 (IAM H1, H2, H3, H4) D55 (IAM H5) D75 (IAM H5) D90
(IAM H6, IAMH7) D200 (IAM H8) Pressure bar Continuous 250 250 250
250 250 250 Max 500 500 400 500 500 500 Flow L/min Continuous 200
200 300 500 600 1000 Max 400 400 600 1000 1200 2000 BACK TO INDEX
03/2006 Pag. 11 FORMULAS x TORQUE (1) Torque specific
torquepressure x TORQUE (2) 62.8 displacement [cc/rev] pressure
[bar] Torque [Nm] x POWER (1) 9549 Torque [Nm] speed [rpm] Power
[kW] x POWER (2) 7023 Torque [Nm] speed [rpm] Power [CV] x SPEED
displacement [cc/rev] flow rate /l[ min] 1000 speed [rpm] x
REQUIRED MOTOR DISPLACEMENT max pressure [bar] max required torque
[Nm] 62 8. displacement [cc/rev] x REQUIRED PUMP FLOW RATE 1000
displacemen [t cc /rev] max speed [rpm] flow [l/min] CONVERSIONS
LENGTH 1 m = 39.3701 in FORCE 1 N = 0.102 kgf = 3.2808 ft = 0.2248
lbf = 1.0936 yd 1 kgf = 2.205 lbf = 1000 mm = 9.806 N 1 in = 0.0833
ft 1 lbf = 0.4536 kgf = 25.4 mm = 4.448 N 1 ft = 0.3048 m = 0.3333
yd PRESSURE 1 bar = 14.223 psi = 12 in = 0.99 atm 1 yd = 0.9144 m =
1.02 ata = 3 ft = 100000 Pa = 36 in = 100 kPa 1 km = 1000 m = 0.1
MPa = 1093.6 yd 1 psi = 0.0703 bar = 0.6214 mile 1 mile = 1.609 km
FLOW 1 l/min = 0.264 gpm = 1760 yd = 1000 cc/min 1 gpm = 3.785
l/min MASS 1 kg = 2.2046 lb = 3785 cc/min 1 lb = 0.4536 kg 1 m3/s =
60000 l/min = 15852 gpm SPEED 1 m/s = 3.6 km/h = 2.237 mph POWER 1
kW = 1.341 HP = 3.2808 ft/s = 1.3596 CV 1 km/h = 0.2778 m/s 1 HP =
0.7457 Kw = 0.6214 mph = 1.0139 CV = 0.9113 ft/s 1 mph = 1.609 km/h
TORQUE 1 Nm = 0.102 kgm = 0.447 m/s = 0.7376 lbf ft = 1.467 ft/s 1
kgm = 9.806 Nm 1 ft/s = 0.3048 m/s = 7.2325 lbf ft = 1.0973 km/h 1
lbf ft = 0.1383 kgm = 0.6818 mph = 1.3558 Nm BACK
частота вращения;
крутящий момент;
вес.
Виды гидромоторов
У нас вы можете купить гидромотор любой разновидности для
применения на мобильной и промышленной гидравлике:
шестерённые гидромоторы,
пластинчатые гидромоторы,
аксиально-поршневые гидромоторы с постоянным рабочим объемом,
героторные гидромоторы.
Купить гидромотор
Обратившись в нашу компанию, вы всегда сможете получить подробную
информацию о любых необходимых вам гидравлических агрегатах и
купить гидромотор любого вида для вашей спецтехники или иного
оборудования. Мы поможем вам не только купить гидромотор, но и
окажем услуги по его установке и дальнейшему техническому
обслуживанию.
Гидромотор цена
Мы стремимся обеспечить своим клиентам лучшие цены на гидромоторы и
поставить покупателям заказанные агрегаты в кратчайшие сроки. Цена
на гидромотор напрямую зависит от его типа, производителя
гидромотора, объёма заказа и наличия требуемого оборудования на
складе. Если вас не устроит наша цена на гидромотор какого-либо
определённого бренда, тогда мы можем предложить вам выбрать
подобный агрегат у любого другого представленного в нашем
ассортименте производителя: Bosch Rexroth, Parker, Samhydraulik,
Haldex, Veljan, Bucher Hydraulics, Vivoil, Caproni, Kawasaki,
Galtech, Calzoni, Hydraut, Sauer Danfoss, Vickers, Hydro Leduc,
Intermot, Sunfab, Cassapa, B&C;, M+S, Yuken, Marzocchi,
Denison, Orsta и др.